高中数学必背公式有哪些

飞雪百科网 49 0

高中数学必背公式有哪些

高考前,考生复习数学时,要保证每天做一定题量的基础题,抓住选择题和填空题重点练习,加大训练力度,争取在这两类题型上获取高分,并且控制做题时间,尽可能地提高考试成绩。下面是小编为大家整理的高中数学必背公式,希望对您有所帮助!

高中数学必背公式有哪些 第1张

高中数学必背公式

1抛物线:

y = ax ·+ bx + c

就是y等于ax 的平方加上 bx再加上 c

a > 0时开口向上

a < 0时开口向下

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

还有顶点式y = a(x+h)· + k

就是y等于a乘以(x+h)的平方+k

-h是顶点坐标的x

k是顶点坐标的y

一般用于求最大值与最小值

抛物线标准方程:y^2=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

2圆:

体积=4/3(pi)(r^3)

面积=(pi)(r^2)

周长=2(pi)r

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

3三角函数:

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

sinα+sin(α+2π/n)+sin(α+2π·2/n)+sin(α+2π·3/n)+……+sin[α+2π·(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π·2/n)+cos(α+2π·3/n)+……+cos[α+2π·(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

4椭圆:

椭圆周长计算公式

椭圆周长公式:L=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

椭圆面积计算公式

椭圆面积公式: S=πab

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。

5公式总结:

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c·h 斜棱柱侧面积 S=c'·h

正棱锥侧面积 S=1/2c·h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi·r2

圆柱侧面积 S=c·h=2pi·h 圆锥侧面积 S=1/2·l=pi·l

弧长公式 l=a·r a是圆心角的弧度数r >0 扇形面积公式 s=1/2·r

锥体体积公式 V=1/3·H 圆锥体体积公式 V=1/3·pi·r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s·h 圆柱体 V=pi·r2h

图形周长 面积 体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

高考数学必考知识点

1、圆柱体:

表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:

表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、正方体

a-边长,S=6a2,V=a3

4、长方体

a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

5、棱柱

S-底面积h-高V=Sh

6、棱锥

S-底面积h-高V=Sh/3

7、棱台

S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3

8、拟柱体

S1-上底面积,S2-下底面积,S0-中截面积

h-高,V=h(S1+S2+4S0)/6

9、圆柱

r-底半径,h-高,C—底面周长

S底—底面积,S侧—侧面积,S表—表面积C=2πr

S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱

R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

11、直圆锥

r-底半径h-高V=πr^2h/3

12、圆台

r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3

13、球

r-半径d-直径V=4/3πr^3=πd^3/6

14、球缺

h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台

r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

16、圆环体

R-环体半径D-环体直径r-环体截面半径d-环体截面直径

V=2π2Rr2=π2Dd2/4

17、桶状体

D-桶腹直径d-桶底直径h-桶高

V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

高考数学必考公式知识点

1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):

(1)若f(x)=-f(x+k),则T=2k;

(2)若f(x)=m/(x+k)(m不为0),则T=2k;

(3)若f(x)=f(x+k)+f(x-k),则T=6k。注意点:a.周期函数,

周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:

(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2

(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称

(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称

4.函数奇偶性:

(1)对于属于R上的奇函数有f(0)=0

(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项

(3)奇偶性作用不大,一般用于选择填空

5.数列爆强定律:

1.等差数列中:S奇=na中,例如S 13 =13a 7

2.等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差

3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立

4.等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求q

6.数列的终极利器,特征根方程。(如果看不懂就算了)。

首先介绍公式:对于a n+1 =pa n +q,a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p?(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)

7.函数详解补充:

(1)复合函数奇偶性:内偶则偶,内奇同外

(2)复合函数单调性:同增异减

(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。

8.常用数列bn=n×(2?n)求和Sn=(n-1)×(2?(n+1))+2记忆方法

前面减去一个1,后面加一个,再整体加一个2

9.适用于标准方程(焦点在x轴)爆强公式

k椭=-{(b?)xo}/{(a?)yo}k双={(b?)xo}/{(a?)yo}k抛=p/yo

注:(xo,yo)均为直线过圆锥曲线所截段的中点。

10.强烈推荐一个两直线垂直或平行的必杀技

已知直线L1:a1x+b1y+c1=0 直线L2:a2x+b2y+c2=0

若它们垂直:(充要条件)a1a2+b1b2=0;

若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)

注:以上两公式避免了斜率是否存在的麻烦,直接必杀!

高三复习数学的方法

1.回归课本,巩固基础:高考倒计时是回归课本的时候了,不要把课本丢下,着重看课本上的公式、理论、定理,学会变换,把基础打牢了自然能举一反三,灵活运用。

2.避免题海战术:对于一看就会的题型直接pass掉,做精题,精做题。不要什么都做没有选择,没有计划,如果每一题都做不仅会浪费时间而且也提高不了多少。

3.不专注于难题:不会的题不要一个人在那死扣,如果一道题你看了20分钟都没有思路,无从下手,要么请教高手要么放弃,不要专注于难题。尽量做一些看起来会但是不能全面做出来的题,克服会而做不对,对而做不全,这样提升空间比较大。

4.各类题的解题方法:不同的题型有不同的解题方法,要善于归纳和整理。要选择填空题可以选择排除法、带进去验证、直觉、数形结合的方法。简单的题答得时候尽量要全面。压轴题,选择、填空、答题都各自的压轴题,会做就做不会做就暂时放弃,先把会的题做出来后再回过头看。

5.训练考试意境:把每次训练都当做高考,数学的复习离不开做题,但是做题量不能太大,做题的时候更应该模拟高考的时间和场景,下午三点到五点考数学,所以在复习的时候也在这个时间做题,适应高考模式。

高三怎么复习数学

抓典型题型,重视通性通法,讲清易错易混点。注重一题多解,熟悉通性通法,重一题多变,讲深、讲透难点,达到做一题会一片的功效。此阶段强调运算对成绩的贡献,数学运算是学习数学的基本功。高考试题在考查考生运算能力的同时,还要考查考生思维的灵活性。所以,要使学生的运算能力得到提高,必须培养学生的观察能力和分析问题的能力,尽可能优化解题结构、减少运算量,从而提高运算的准确性。为了实现这一目标,要让学生学会猜算、估算、巧算。

另外,要求集中训练选填题,讲解与总结解决选择题与填空题的方法。选择题鼓励学生积极思维敢于筛选,特别是有的答案已摆在面前,可用特例法、验证法、图解法、结论法等。近几年的高考题选择题中,有很多题目就可以使用技巧,有的甚至不需要动笔就能得出答案。通过模拟考试和选填训练,目的是培养学生的应试能力和技巧,规范解题和做题速度、难度。

最后调整阶段是温书阶段,调整心理,回到基础,回归课本,对课本内容重新整理做到胸有成竹,增强信心,自我调整作息,以平和的心态迎接高考。